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Abstract
We show that to describe correctly the position of the critical line in Kauffman
random Boolean networks one must take into account percolation phenomena
underlying the process of damage spreading. For this reason, since the issue
of percolation transition is much simpler in random undirected networks than
in the directed ones, we study the Kauffman model in undirected networks.
We derive the mean field formula for the critical line in the giant components
of these networks, and show that the critical line characterizing the whole
network results from the fact that the ordered behavior of small clusters shields
the chaotic behavior of the giant component. We also show a possible attitude
towards the analytical description of the shielding effect. The theoretical
derivations given in this paper very much tally with the numerical simulations
done for classical random graphs.

PACS numbers: 89.75.Hc, 89.75.−k, 64.60.Cn, 05.45.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Almost 40 years ago Stuart Kauffman proposed random Boolean networks (RBNs) for
modelling gene regulatory networks [1]. Since then, beside its original purpose, the model
and its modifications have been applied to many different phenomena like cell differentiation
[2], immune response [3], evolution [4], opinion formation [5], neural networks [6], and even
quantum gravity problems [7].

The original RBNs were represented by a set of N elements,
∑

t = {σ1(t), σ2(t), . . . ,

σN(t)}, each element σi having two possible states: active (1), or inactive (0). The value of
σi was controlled by k other elements of the network, i.e.

σi(t + 1) = fi(σi1(t), σi2(t), . . . , σik (t)), (1)
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where k was a fixed parameter. The functions fi were selected so that they have returned
values 1 and 0 with probabilities respectively equal to p and 1 − p. The parameters k and p
have determined the dynamics of the system (Kauffman network), and it has been shown that
for a given probability p, there exists the critical number of inputs [13]

kc = 1

2p(1 − p)
, (2)

below which all perturbations in the initial state of the system die out (frozen phase), and
above which a small perturbation in the initial state of the system may propagate across the
entire network (chaotic phase).

In fact, the behavior of the Kauffman model in the vicinity of the critical line kc(p)

has become a major concern of scientists interested in gene regulatory networks. The main
reason for this was the conjecture that living organisms operate in a region between order
and complete randomness or chaos (the so-called edge of chaos) where both complexity and
the rate of evolution are maximized [8–10]. The analogous behavior has been noticed in
Kauffman networks, which in the interesting region described by equation (2) show stability,
homeostatis, and the ability to cope with minor modifications when mutated. The networks
are stable as well as flexible in this region.

Recently, when data from real networks have become available [11, 12], a quantitative
comparison of the edge of chaos in these datasets and RBN models has brought an encouraging
and promising message that even such simple models may quite well mimic characteristics of
real systems.

Since, however, one has noticed that real genetic networks exhibit a wide range of
connectivities, the recent modifications of the standard RBN take into consideration a
distribution of nodes’ degrees P(k). It has been shown that if the random topology of the
directed network is homogeneous (i.e. all elements of the network are statistically equivalent),
then the network topology can be meaningfully characterized by the average in-degree 〈k〉,
and the transition between frozen and chaotic phase occurs for [14]:

〈k〉c = 1

2p(1 − p)
. (3)

Several authors [17, 18] have provided a general formula for the edge of chaos in directed
networks characterized by the joint degree distribution P(k, q)

〈kq〉
〈q〉 = 1

2p(1 − p)
, (4)

where k and q correspond to in- and out-degrees of the same node, respectively. The formula (4)
shows that the position of the critical line depends on the correlations between k and q in such
networks. It is also easy to show that the previous results (2) and (3) immediately follow
from (4) if one assumes the lack of correlations P(k, q) = Pin(k)Pout(q).

Very recently, it has been shown by finite-size scaling methods (FSS) that the critical
connectivity 〈k〉FSS

c deviates significantly from the value established by equation (3), even
for large system sizes [19]. More precisely, one observes that 〈k〉FSS

c < 〈k〉c. To support
this observation the authors recall other studies, for example [20], which suggest that gene
regulatory networks appear to be in the ordered regime and reside slightly below the phase
transition between order and chaos in contrast to the theory which proposes the critical line to
be an evolutionary attractor.

In the present paper, we suggest another explanation for the observed discrepancy. We
show (both analytically and numerically) that the discrepancies are due to the percolation
phenomena which become important in the region of small values of the parameter 〈k〉.
2
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Figure 1. General structure of a directed network above the percolation threshold.

(a) (b)

Figure 2. Schematic plot of sizes of network components as a function of average node degree in
(a) directed ER graphs and (b) undirected ER graphs.

To understand the complexity of the percolation phenomena in directed graphs let us
recall the structure of such a graph [23, 26]. In general, a directed graph consists of a giant
weakly connected component (GWCC) and several finite components (FCs). In the GWCC
every site is reachable from every other, provided that the links are treated as bidirectional.
The GWCC is further divided into a giant strongly connected component (GSCC), consisting
of all sites reachable from each other following directed links. All sites reachable from the
GSCC are referred to as the giant OUT component, and the sites from which the GSCC is
reachable are referred to as the giant IN component. The GSCC is the intersection of the IN
and OUT components. All sites in the GWCC, but not in the IN and OUT components, are
referred to as the tendrils (TDs) (see figure 1).

The size of all components listed above doubtlessly has an impact on propagation of
perturbations in directed RBNs. Moreover, GSCC and GWCC start to form at different values
of the parameter 〈k〉 (see figure 2(a)). Although it has been shown in [23, 26] how to find
the relative sizes of the components (for example GWCC appears when 〈kq〉 � 〈q〉), the
problem of how to implement these results into the theory of perturbation spreading in RBNs
is still far from being solved. As a first step in this direction, and to show the importance of
the percolation phenomena on the dynamics of RBN we concentrate on an undirected case
of the model. Although the original RBNs have been defined as directed ones, the study of
undirected networks significantly reduces the complexity of the problem (see figure 2).

To this end, we organize our paper as follows. In the next section, we present numerical
methodology and finite-size scaling of perturbation spreading in RBNs. In section 3 we
derive general relation describing position of the critical line in undirected RBNs with
arbitrary distribution of connections P(k), in the analogy of the mean-field theory for

3
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Figure 3. Probability D against (a) control parameter 〈k〉 and (b) rescaled parameter φ for p = 0.5.

directed RBNs [13]. Comparing the theory with numerical simulations we show significant
deviations between both the approaches. Then an improved treatment including the percolation
phenomena is presented in section 4. A summary of our findings is given in section 5.

2. Critical line in undirected random graphs — numerical simulations

In order to find the position of the critical line in RBN one has to examine the sensitivity of
its dynamics with regard to initial conditions. In numerical studies such a sensitivity can be
analyzed quite simply. One has to start with two initial states

∑
0 = {σ1(0), σ2(0), . . . , σN(0)}

and
∑̃

0 = {σ̃1(0), σ̃2(0), . . . , σ̃N (0)}, which are identical except for a small number of
elements, and observe how the differences between both configurations

∑
t and

∑̃
t change in

time. If a system is robust then the studied configurations lead to similar long-time behavior,
otherwise the differences develop in time. A suitable measure to find the distance between the
configurations is the overlap x(t) defined as

x(t) = 1 − 1

N

N∑
i=1

|σi(t) − σ̃i (t)|. (5)

Note, that in the limit N → ∞, the overlap becomes the probability for two arbitrary but
corresponding elements, σi(t) and σ̃i (t), to be equal. Moreover, the stationary long-time limit
of the overlap x = limt→∞ x(t) can be treated as the order parameter of the system. If x = 1
then the system is insensitive to initial perturbations (frozen phase), while for x < 1, the initial
perturbations propagate across the entire network (chaotic phase).

For numerical purposes we define probability D that the system is sensitive to perturbations

D =
∑R

x(t=T )<x(0) 1

R
, (6)

where R is the number of generated networks, and T the number of system updates. In our
simulations we take RN = 106 and T = 200. Figure 3(a) presents a typical example of
D-dependence on our control parameter 〈k〉 for different network sizes. Then, we apply
finite-size scaling method [24] to determine how probability D scales with the system size.

4
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Figure 4. Normalized critical connectivity against the number of perturbed nodes in networks of
N = 1000 elements. Lines are shown only for a better visibility of the presented dependence.

Around some critical point, we predict that systems of all sizes are indistinguishable except
for a change of scale. This suggests

D(〈k〉) = f (φ), (7)

where

φ =
( 〈k〉 − 〈k〉c

〈k〉c

)
N1/ν . (8)

In equation (7), f is one of the functions shown in the figure 3(a), 〈k〉c is the critical point,
and N1/ν provides the change of scale. Figure 3(b) shows how probability D depends on the
parameter φ with fitted parameters 〈k〉c = 1.45 ± 0.04 and ν = 2.2 ± 0.1.

The other problem which should be noted here is the observation that 〈k〉c depends on
the number of initially perturbed nodes. In the figure 4 we plot the dependence of normalized
critical connectivity

〈̃k〉c = 〈k〉c(�) − 〈k〉c
〈k〉c , (9)

against the number � of initially perturbed nodes in the network of N = 1000 elements. For
further calculations we choose � = 0.032N , since then the error in 〈k〉c is less than the error
seen in finite-size scaling.

In figure 5, using the method described above, we show the numerically obtained values
of 〈k〉c against the parameter p. For p = 0.5 critical connectivity is minimal, i.e. 〈k〉c = 1.45.
Please note that the size of the giant component for this connectivity is about one half of
the whole network. One can expect that a large number of isolated nodes and clusters
can significantly affect the perturbation spreading rate in this regime. Moreover, it has been
demonstrated [25], that the giant component is correlated in sparse networks. In the following,
we will show that a mean field theory which does not take into account these percolation and
correlation issues, although correct for large values of 〈k〉, deviates from numerical results for
〈k〉 close to 1.
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Figure 5. Phase diagram for the undirected RBN model. Points show results obtained by numerical
simulations. The line is a solution of equation (19).

3. Damage spreading in undirected Kauffman RBN—a simple approach

In this section, we derive a mean field formula for the critical line characterizing Kauffman
Boolean model in undirected and uncorrelated random graphs with arbitrary degree
distributions P(k). To this end, we partially reproduce and generalize a simple annealed
calculations that have been for the first time carried out by Derrida and Pomeau [13]. The
case of random directed networks has been studied by Aldana [15], and also by Lee and
Rieger [17].

Thus, let xi(k, t) corresponds to the probability that a given element i of degree k possesses
the same value in both configurations

∑
t and

∑̃
t of the considered Boolean network, i.e.

σi(t) = σ̃i (t). It occurs either when all the k inputs of σi(t) are equal to respective inputs of
σ̃i (t), or when the function fi , cf (1), ascribed to the node i returns the same value for these
two configurations. The first case happens with probability

X(q1, q2, . . . , qk, t − 1) = x(q1, t − 1)x(q2, t − 1) . . . x(qk, t − 1), (10)

where x(qj , t − 1) represents probability that in the previous time step (t − 1) the j th nearest
neighbor of i having degree qj was in the same state in the two considered configurations. It
is also easy to see that the second case arises with probability p2 + (1 − p)2, when at least one
of the k inputs of σi differs from its counterpart in σ̃i giving rise to the same values of σi and
σ̃i . Such a situation, in turn, happens with probability equal to 1 − X(q1, q2, . . . , qk, t − 1).
Taking all above facts together we find that the probability xi(k, t) that σi(t) = σ̃i (t) is given
by

xi(k, t + 1) = X(q1, . . . , t) + (p2 + (1 − p)2)X(q1, . . . , t)

= 1 − 2p(1 − p) (1 − X(q1, q2, . . . , qk, t)) , (11)

where q1, q2, . . . , qk stand for degrees of nodes found in the nearest neighborhood of the
node i.

Equation (11) describes dynamics of a single node i of degree k. In order to study
Boolean dynamics of the whole network one has to average the equation, first over the nearest
neighborhood of i, then over the whole network. The first step simply means averaging over

6
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the distribution P(q1, q2, . . . , qk/k), which describes probability that nearest neighbors of i
have degrees respectively equal to q1, q2, . . . , qk

x(k, t + 1) = 1 − 2p(1 − p)

(
1 −

∑
q1,...,qk

X(q1, . . . , t)P (q1, . . . /k)

)
, (12)

whereas the second step corresponds to averaging of the last equation over the node degree
distribution P(k) characterizing the whole network. Note, that we have omitted the subscript
i at x(k, t + 1) in equation (12). After averaging, x(k, t + 1) refers to the set of nodes having
the same degree k.

At the moment, before we proceed with our calculations let us outline structural properties
of the studied networks. At the beginning let us remind that the assumed lack of higher-order
correlations (e.g. three-point or four-point correlations) means that a given link {i, j} does
not influence other links of the considered nodes i and j . It translates to the fact that the
conditional probability P(q1, q2, . . . , qk/k) factorizes

P(q1, q2, . . . , qk/k) = P(q1/k)P (q2/k) . . . P (qk/k), (13)

where P(qj/k) describes probability that a node of degree qj is the nearest neighbor of a node
having degree k. Given the formulas (10), (13) and (15), the equation (12) further simplifies
as follows

x(k) = 1 − 2p(1 − p)

⎛⎝1 −
(∑

q

x(q)P (q/k)

)k
⎞⎠ , (14)

where, since we are interested in the stationary (i.e. for t → ∞) solutions of this equation, we
have omitted dependence on time t.

Now, assuming the lack of two point correlations, i.e.

P(qj/k) = qj

〈k〉P(qj ), (15)

which causes that the nearest neighborhood of each node is the same (in statistical terms),
and then multiplying both sides of equation (14) by k, and finally averaging the resulting
equation over the node degree distribution P(k), we get the desired mean-field equation which
describes stationary states of the Kauffman model defined on undirected and uncorrelated
random networks with arbitrary degree distributions

〈kx〉
〈k〉 = M

( 〈kx〉
〈k〉

)
= 1 − 2p(1 − p)

(
1 −

∑
k

( 〈kx〉
〈k〉

)k
k

〈k〉P(k)

)
, (16)

where 〈kx〉 = ∑
k kx(k)P (k).

At the moment, note that the state 〈kx〉 = 〈k〉, which in fact corresponds to the set of
conditions x(k) = 1 for all nodes’ degrees k, is always a solution of the last equation, see
figure 6. Note also, that this solution may be stable or unstable depending on properties of the
considered map y = M(y), where y = 〈kx〉/〈k〉 (16). In fact, one can show that the solution
loses its stability, when another solution 〈kx〉 < 〈k〉 of this equation appears. For the first time
we see this when

lim
y→1−

dM(y)

dy
= 1, (17)

where the limit y → 1− is equivalent to 〈kx〉 → 〈k〉−. Substituting (16) into (17) we get
the condition for the phase transition between ordered and chaotic behavior of the Kauffman

7
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Figure 6. The map y = M(y) considered in the text. The solid line corresponds to the situation
when the only stable solution is 〈kx〉 = 〈k〉, i.e. x(k) = 1 for all values of k. The dashed line
shows the case when the second solution 〈kx〉 < 〈k〉 appears.

model defined on undirected and uncorrelated random network

〈k2〉
〈k〉 = 1

2p(1 − p)
, (18)

where 〈k〉 and 〈k2〉 stand for the first and the second moment of the degree distribution P(k),
respectively. In the following we analyze briefly the formula for the critical line (18) in
classical random graphs. The case of scale-free networks P(k) ∼ k−γ , for which the second
moment 〈k2〉 of the degree distribution becomes important, has been analyzed in [31].

Thus, since in classical random graphs 〈k2〉 = 〈k〉2 + 〈k〉, the formula (18) simplifies as

〈k〉c = 1

2p(1 − p)
− 1. (19)

In figure 5 one can see numerical simulations of the Kauffman Boolean model defined on these
graphs as compared with the expression (19). In our previous paper [31] we have suggested
that the visible discrepancy between numerical calculations and their theoretical prediction
for 〈k〉 → 1 (i.e. for p → 0.5) may result from the fact that 〈k〉 = 1 corresponds to the
percolation threshold in these networks. A simple heuristic argument behind this statement
was the following: because the size of the largest component near 〈k〉 = 1 is significantly
smaller than the network size (the network is divided into several disconnected components),
any perturbation cannot propagate across the entire system, and the frozen phase is easily
achieved. It means that the closer percolation threshold 〈k〉 = 1 we are, the more crumbled
network (separated pieces of the whole system) we analyze, and the theoretical prediction given
by equation (19) works worse and worse. In fact, comparing the general formula 〈k2〉/〈k〉 = 2
[32] for the percolation threshold in arbitrary undirected and uncorrelated random network
with the general expression for the critical line (18), one can show that the arguments exposed
in relation to classical random graphs should apply also for the whole class of the considered
networks.

In the next section we show how to adjust the approach presented in this section in order
to correctly describe properties of the analyzed systems in the whole range of parameters, also
in the vicinity of the percolation transition.

8
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4. The effect of percolation phenomena on damage spreading

In the following, in order to address correctly the problem of damage spreading in the vicinity
of percolation transition, that has been outlined at the end of the previous section, we use
a few important results on percolation phenomena in the considered class of networks. To
begin with, we recall these results. As we move to directly (i.e. in the course of numerical
simulations) check our derivations in classical random graphs, together with general formulas
describing behavior of arbitrary undirected and uncorrelated random networks we also provide
the respective formulas for these graphs.

Thus, as we have already mentioned, random graph with a given node degree distribution
P(k) does not need to be connected. However, if

〈k2〉
〈k〉 > 2, (20)

that in classical random graphs translates into

〈k〉 > 1, (21)

the giant component GC emerges gathering a finite fraction of all nodes and links. The size
of the giant component S, i.e. the probability that an arbitrary node belongs to GC, is given
by the formula

S = 1 − G0(u), (22)

where u is the solution of the self-consistency equation

u = G1(u), (23)

and 1 − u2 is the probability that a link belongs to the giant component. The functions
G0(u) and G1(u) correspond to generating functions of the node degree distribution P(k),
and the conditional distribution P(qj/k) (15), respectively. Since in classical random graphs
G0(x) = G1(x) = e〈k〉(x−1), the formula (22) for these networks significantly simplifies

S = 1 − e−〈k〉S, (24)

and the expression for u becomes

u = 1 − S. (25)

The general results for percolation transition in random undirected and uncorrelated
networks outlined in the previous paragraph are already well known. They have been derived
by several authors using different theoretical approaches, see e.g. [30, 32]. Recently, however,
new interesting results, adding to our knowledge in this subject comprehensively, have been
obtained by Białas and Oleś [25]. The authors have shown that the neighboring nodes in the
giant connected components are disassortatively correlated. They have also derived analytic
formulas for the node degree distribution

P ∗(k) = P(k)
1 − uk

S
, (26)

and the joint nearest-neighbor degree distribution

P ∗(k, q) = P(k, q)

(
1 − uk+q−2

1 − u2

)
= kP (k)qP (q)

〈k〉2

(
1 − uk+q−2

1 − u2

)
, (27)

characterizing the giant component. Let us note, that in the limit u → 0, when the
giant component covers the whole network S → 1, the both distributions P ∗(k) and
P ∗(k, q) respectively converge to distributions P(k) and P(k, q), which characterize random

9
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uncorrelated networks. The formulas (26) and (27) are crucial for the further developments
of this paper, as they show that although in average the considered networks are uncorrelated,
in the vicinity of percolation transition their giant components are disassortative (note that we
still do not know anything about higher-order correlations in GC s). Now, since we know
that this type of correlation makes different spreading-like phenomena more difficult [21], we
expect that disassortativity of the giant component is partially responsible for the discrepancy
observed in figure 5, with the crumbling of the system as a whole being the second reason.
Below, we show that taking these effects into consideration significantly improves theoretical
prediction for the critical line in the Kauffman model defined on random uncorrelated networks.

Thus, let us study damage spreading within the giant component of the considered
networks. Knowing properties of this cluster, we can start our analysis from equation (14),
which is valid for the general class of networks with two-point correlations. The
conditional probability P ∗(q/k) for the giant component can be calculated from the standard
expression [33]

P ∗(q/k) = 〈k〉∗P ∗(k, q)

kP ∗(k)
, (28)

where

〈k〉∗ =
∑

k

kP ∗(k) = 〈k〉1 − u2

S
, (29)

is the average degree characterizing this component. Inserting (26) and (27) into (28) we get

P ∗(q/k) = P(q/k)

(
1 − uk+q−2

1 − uk

)
, (30)

where P(q/k) is given by (15). The last formula (30) can be also written in the equivalent
form

P ∗(q/k) = P ∗(q)

(
q

〈k〉
S

(1 − uq)

) (
1 − uk+q−2

1 − uk

)
, (31)

which turns out to be useful for further deductions.
Now, let us apply the equation (14) to the giant component

x∗(k) = 1 − 2p(1 − p)

⎛⎝1 −
(∑

q

x∗(q)P ∗(q/k)

)k
⎞⎠ . (32)

Due to the complicated form of the conditional distribution P ∗(q/k) (30), it is impossible to
deduce on possible solutions of the equation (32) in the same way as we have done it for the
case of uncorrelated networks. However, substituting (31) into (32) we obtain

x∗(k) = 1 − 2p(1 − p)

⎛⎝1 −
(∑

q

κ(q)w(q, k)P ∗(q)

)k
⎞⎠ , (33)

where

κ(q) = x∗(q)
S

1 − uq

q

〈k〉 , (34)

and

w(q, k) = 1 − uq+k−2

1 − uk
. (35)

10
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Next, applying a mean field approximation to equation (33)

〈κ(q)w(q, k)〉∗ =
∑

q

κ(q)w(q, k)P ∗(q)

�
(∑

q

κ(q)P ∗(q)

) (∑
q

w(q, k)P ∗(q)

)
= κ∗w∗(k), (36)

we get the simplified equation

x∗(k) = 1 − 2p(1 − p)(1 − (κ∗w∗(k))k), (37)

which after some algebra, consisting of multiplying both sides of this equation by
(k/〈k〉)(S/(1−uk)) and then averaging it over P ∗(k), further simplifies and becomes equivalent
to equation (16)

κ∗ = M∗(κ∗) = 1 − 2p(1 − p)

(
1 −

∑
k

(κ∗w∗(k))k
k

〈k〉P(k)

)
. (38)

The equivalence of the two equations (16) and (38) is visible when u → 0 (i.e. S → 1).
Then, the parameter κ∗, see equations (34) and (36), simplifies as follows

κ∗ =
∑

k

x∗(k)
k

〈k〉∗
S

(1 − uq)
P ∗(k) (39)

�
∑

k

x∗(k)
k

〈k〉∗ P ∗(k) � 〈xk〉
〈k〉 , (40)

where the averages 〈. . .〉∗ and 〈. . .〉 have their standard meaning (in our calculations ′∗′ always
refers to the giant component). This equivalence, also makes possible a similar analytical
treatment of equation (38), as the one performed in the reference case of uncorrelated networks,
compare equations (14)–(18).

Thus, in order to find condition for the transition between ordered and chaotic phase of
the Kauffman model defined in giant components of random uncorrelated networks we have
to check when the solution κ∗ = 1 (39), corresponding to x∗(k) = 1 for all nodes’ degrees,
becomes unstable. In fact, it happens when

lim
κ∗→1−

dM∗(κ∗)
dκ∗ = 1. (41)

From the equation (38) it follows that the condition has a very simple form

〈k2w∗(k)k〉
〈k〉 = 1

2p(1 − p)
, (42)

where

w∗(k) =
∑

q

w(q, k)P ∗(q) =
∑

q

1 − uq+k−2

1 − uk
P ∗(q) (43)

is defined in equation (36). At the moment, let us note that in the limiting case of u → 0, the
parameter w∗(k) → 1, and the formula (42) simplifies to the previous condition (18).

It is easy to check, that in the simplest case of classical random graphs the parameter
w∗(k) (43) is given by

w∗(k) = 1 − u − uk−1 + uk+u−1

(1 − u)(1 − uk)
. (44)

11
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Figure 7. Phase diagram for undirected RBN model in classical random graphs. Dotted line
is a solution of basic equation (19). Filled points represent numerical simulations made for the
whole network (the same data are shown in figure 5). Open points and dashed line correspond
respectively to numerical simulations and analytic prediction of equation (42) for the Kauffman
model defined in giant components only. Solid line is the solution of final equation (47). Gray
area emphasizes the set of parameters where the chaotic behavior, although present in the giant
component, is not yet visible in the whole network.

Inserting (44) into (42), and then solving numerically the resulting equation for 〈k〉 we obtain
a theoretical prediction for the critical line of the Kauffman model in giant components of
these graphs. In figure 7 one can see that numerical simulations very much tally with the
theoretical prediction of equation (42). Given figure 7, we would also like to take note of two
other interesting effects related to the analyzed problem. First, the critical line characterizing
the giant component significantly differs from the curve described by the formula (18). It is
shifted towards the numerically obtained critical line characterizing the whole network. The
observation is in some sense promising, as it partially confirms the main proposition of this
paper, which states that the percolation transition is responsible for discrepancies observed in
figure 5. The second effect concerns mutual relationship between the behavior of the giant
component and the behavior of the whole network. Since one knows that the giant component
makes up a macroscopic part of the network (it grows linearly with the network size N, and
becomes infinite in the thermodynamic limit N → ∞) one could expect that dynamics of the
whole network should reflect behavior of the giant component. Thus, the question is, why the
numerically obtained critical line characterizing the whole network differs from the theoretical
prediction for the giant component. In other words, why, for the set of parameters marked
by the light gray area in figure 7, the chaotic behavior of the giant component is not visible
through out the whole network.

To solve the problem stated at the end of the last paragraph, let us briefly recall what the
numerical simulations of the Kauffman model consist in. Thus, in numerical studies we check
how the initial perturbation of the system x(0) ≡ 1−� (5), where � 
 1, develops over time.
In general, when the parameter x(t = T ) < x(0) we identify the system as the chaotic one.
On the other hand, when x(0) � x(t = T ) � 1 we treat it as being in the ordered phase. In
reality, however, due to the fact that in the vicinity of the percolation transition the considered
Kauffman networks are strongly heterogenous, they consist of the giant component which is
escorted by a number of small tree-like clusters and isolated nodes, the systems should be
treated more carefully.

12
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t=0 t=T
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FCs

IPs

Figure 8. Schematic plot of spreading of perturbation in giant component (GC), finite clusters
(FCs) and isolated points (IPs). In GC damage spreads, in FCs it shrinks, while in IPs it does not
change.

k f
0

c
k

Figure 9. Chaoticity � (solid line) in the vicinity of the critical point 〈k〉∗c . 〈k〉∗ and 〈k〉f are the
average node degree in GC and in FCs respectively. Dashed line presents linear approximation
of �.

To describe better the situation, let us choose the system parameters from the region that
is marked by the light gray color in figure 7. Then, we introduce a quantity �, which measures
chaoticity in the system as a mean damage size caused by a single node perturbation. If
� > (<)0 then mean damage size grows(shrinks) in time. Condition � = 0 will allow us to
derive the relation for the critical line in the whole network.

Let us now divide the network into three parts: giant connected component (GC), finite
clusters (FCs) and isolated points (IPs). The figure 8 shows schematically how the single
node perturbation evolves in time in these three parts of the network. In the studied range of
parameters the giant component behaves chaotically, i.e. the mean damage size is larger than
initial perturbation and �GC > 0. On the other hand, the small density of connections in finite
tree-like clusters does not allow perturbation to spread out and �FCs < 0. Because the state
of isolated nodes does not change in time, then �IPs = 0. Now, if one perturbs randomly a
set of nodes in the whole network, fraction S of perturbations will be located in GC, fraction
(1 − S)(1 − P(k = 0)) will be located in FCs, and the rest of them, i.e. (1 − S)P (k = 0) will
perturb isolated nodes. Now one can write the condition for transition from the frozen to the
chaotic state in the whole network:

S�GC + (1 − S)(1 − P(k = 0))�FCs = 0, (45)

where �, P(k) and S depend on 〈k〉. This equation shows that the ordered behavior of small
clusters can shield the chaotic behavior of the giant component. Only when chaoticity in GC
is sufficiently developed, this shielding effect becomes neglected.

13



J. Phys. A: Math. Theor. 41 (2008) 224009 P Fronczak and A Fronczak

Now, expanding � into power series at 〈k〉 = 〈k〉c
� = �0 +

∂�

∂〈k〉 (〈k〉 − 〈k〉c), (46)

where �0 = 0 in critical point (cf figure 9), one gets the final equation for the critical line:

S(〈k〉∗ − 〈k〉∗c ) = (S − 1)(1 − P(k = 0))(〈k〉f − 〈k〉∗c ), (47)

where 〈k〉f = 〈k〉u (cf equation (25) in [25]). The numerical solution of this implicit equation
is presented in figure 7 as the solid line.

5. Conclusions

This study was done to investigate the properties of undirected KBN model in the vicinity of
percolation threshold. We derived a mean field formula for the critical line characterizing the
KBN model in undirected and uncorrelated random graphs with arbitrary degree distributions.
We have shown that the results of classical mean field theory differ from these obtained by
numerical simulations. We have shown also that, to explain the discrepancies one has to
take into account the effect of correlations between adjoining nodes in the giant connected
component as well as the effect of shielding by finite size clusters. As one can see, the problem
is not easy even for undirected networks. As we have shown in figures 1 and 2, a directedness
of the network introduces further complications in calculations. Nevertheless, we think that
a similar approach can be derived even for that case. We hope that the presented work will
encourage others to pursue these topics in the near future.
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